

Typenblatt


Über- und Unterdruckrohrleitungsventil **KITO**[®] **VD/o3-...**

Verwendung

Druckausgleichventil, vorzugsweise für nicht brennbare, unter Schutzgas gelagerte Flüssigkeiten, zur Be- und Entlüftung von Festdachtanks und oberirdischen Behältern, mit seitlichem Anschluss für Schutzgasleitung und einem dritten Flanschstutzen, z. B. für Anschluss an Sammelleitung, zur Gaspendelung oder Abluftverbrennung. Das Überdruckventil verhindert unnötige Schutzgasverluste. Das Steuerventil regelt automatisch die Schutzgaszufuhr und den Schutzgasdruck im Behälter. Maximaler Vordruck siehe Einstellung "Vacuum".

Abmessungen (mm) und Einstelldrücke (mbar)

DN						Einstelldruck Vacuum Druck			
DIN	ASME	С	н	H1	kg		min max.		min max.
50 PN 16	2"	145	450	105	20	2,7 - 10,6	10,7 - 75	2 - 10	10,1 - 110
80 PN 16	3"	175	595	163	45	2,7 - 10,6	10,7 - 120	1,7 - 7,9	8 - 90
100 PN 16	4"	190	600	190	54	1,7 -7,9	8 - 100	1,7 - 7,9	8 - 50

Gewichtsangaben enthalten kein Belastungsgewicht und gelten nur für die Standard-Ausführung.

Höhere Einstellungen auf Anfrage!

Bestellbeispiel

KITO® VD/o3-50

(Ausführung mit Flanschanschluss DN 50 PN 16)

ohne Baumusterprüfung und C € -Kennzeichnung

Seite 1 von 2

F 18 N

05-2018

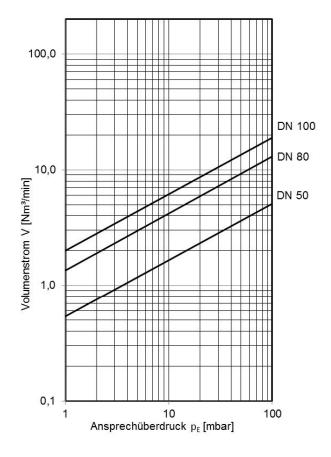
Änderungen vorbehalten

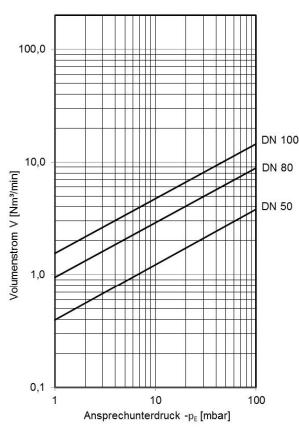
Datum:

Typenblatt

Über- und Unterdruckrohrleitungsventil **KITO**[®] **VD/o3-...**

Ausführung


	Standard	wahlweise			
Gehäuse / Stutzen	Stahl	Edelstahl 1.4571			
Gehäusedichtung	HD 3822	PTFE			
Ventilsitz, Ventilspindel	Edelstahl 1.4571				
Ventilsitzdichtung (O-Ring)	Silikon-FEP	Viton, Perbunan, Silikon-PFA			
Belastungsgewicht	Edelstahl 1.4571	PE			
Ventiltellerdichtung	Perbunan	Viton, PTFE, EPDM, metallisch			
	≥ 100 mbar nur PTFE oder metallisch				
Flanschanschluss	EN 1092-1 Form A	ASME B16.5 Class 150 RF			


Leistungsdiagramm

Der Volumenstrom V ist auf die Dichte von Luft mit ρ = 1,29 kg/m³ bei T = 273 K und einem Druck von p = 1.013 mbar bezogen. Für Medien anderer Dichte kann der Gasstrom ausreichend genau mit einer einfachen Näherungsgleichung bestimmt werden:

$$\dot{V}_{40\%} = \dot{V}_b \cdot \sqrt{\frac{\rho_b}{1,29}}$$
 bzw. $\dot{V}_b = \dot{V}_{40\%} \cdot \sqrt{\frac{1,29}{\rho_b}}$

Die Volumenströme ergeben sich bei Drucksteigerungen von 40 % über die Einstelldrücke hinaus (siehe DIN 4119). Volumenstrom Angaben bei Drucksteigerungen kleiner 40% auf Anfrage.

Seite 2 von 2

F 18 N

Datum: 05-2018

