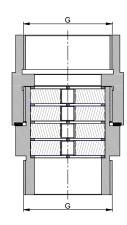
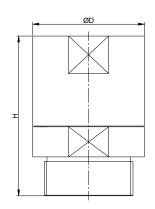
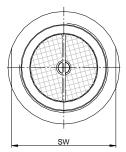


Typenblatt Detonationsrohrsicherung bi-direktional


KITO® FS-Det4-IIC-...-1,2




Verwendung

Einbau in Rohrleitungen als Detonationsrohrsicherung z. B. zur Absicherung von Zündgasleitungen oder Messeinrichtungen. Einsetzbar für alle Stoffe der Explosionsgruppen IIA1 bis IIC mit einer Normspaltweite (MESG) < 0,5 mm. Beidseitig wirkend, für einen maximalen Betriebsdruck von 1,2 bar abs. und einer maximalen Betriebstemperatur von 60 °C.

Abmessungen (mm)

Gewinde	D	Н	SW	kg
G 1/2"	35	69	30	0,4
G ¾"	40	69	36	
G 1"	45	69	41	0,6
G 1 ¼"	55	107	50	
G 1 ½"	60	107	55	
G 2"	75	107	70	2,0

Gewichtsangaben gelten nur für die Standard-Ausführung

Bestellbeispiel

KITO® FS-Det4-IIC-1"-1,2

(Ausführung mit Gewindeanschluss G 1")

Baumusterprüfung nach EN ISO 16852 und C €-Kennzeichnung nach ATEX-Richtlinie 2014/34/EU

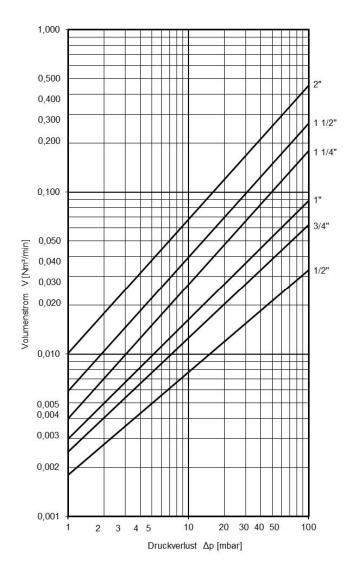
Seite 1 von 2

G 32 N

05-2018

Typenblatt

Detonationsrohrsicherung bi-direktional KITO® FS-Det4-IIC-...-1,2


Ausführung

	Standard	wahlweise
Gehäuse	Edelstahl 1.4571	
Gehäusedichtung	PTFE	
KITO®-Rost	Edelstahl 1.4571	
Zwischenlage	Edelstahl 1.4571	
Anschluss	Außen- und Innengewinde	

Leistungsdiagramm

Der Volumenstrom V ist auf die Dichte von Luft mit ρ = 1,29 kg/m³ bei T = 273 K und einem Druck von p = 1.013 mbar bezogen. Für Medien anderer Dichte kann der Gasstrom ausreichend genau mit einer einfachen Näherungsgleichung bestimmt werden:

$$\dot{V} = \dot{V}_b \cdot \sqrt{\frac{\rho_b}{1,29}} \qquad \text{bzw} \ . \qquad \dot{V}_b = \dot{V} \cdot \sqrt{\frac{1,29}{\rho_b}}$$

Seite 2 von 2

G 32 N

Datum: 05-2018

