
SRW

Linearführung mit Rollenkette Breiter, hochsteifer Typ SRW

* Zur Rollenkette siehe S. A1-278.

Aufbau und Merkmale	▶ ▶▶ ▲1-295	
Typenübersicht	▶ ▶▶ ▲1-296	
Tragzahlen in allen Richtungen	▶▶▶▲1-296	
Äquivalente Belastung	▶▶▶▲1-297	
Lebensdauer	▶▶▶ △ 1-76	
Vorspannung	▶▶▶ △1-91	
Genauigkeitsklassen	▶▶▶▲1-103	
Schulterhöhe der Montagefläche und Ausrundungsradius	▶▶▶ △ 1-311	
Zulässige Toleranz der Montagefläche	▶▶▶▲1-298	
Maßzeichnung, Maßtabelle, Beispiel für Bestellbezeichnung	▶▶▶ B 1-232	
Standard- und Maximallängen der Führungsschienen	▶▶ ■ 1-234	

Aufbau und Merkmale

Auf der Rollenführung Typ SRG basierend, besitzt dieser Typ eine breitere Führungsschiene, die mit zwei Reihen Befestigungsbohrungen ausgestattet ist, um eine hohe Montagefestigkeit und -stabilität zu gewährleisten. Der Typ SRW ist eine Rollenführung mit ultrahoher Steifigkeit, die Rollenketten verwendet, welche für geringe Reibung, leichtgängige Bewegung und langfristig wartungsfreien Betrieb sorgen.

[Ultrahohe Steifigkeit]

Da dieser Typ eine breite Führungsschiene besitzt, kann er mit zwei Reihen Befestigungsschrauben an der Unterkonstruktion befestigt werden, was die Montagefestigkeit deutlich erhöht. Da der Querabstand der Laufbahnen (L) groß ist, ergibt sich beim Typ SRW eine hohe Steifigkeit gegenüber Momenten in rollender Richtung (Mc-Moment).

Außerdem verwendet die SRW Rollen mit geringer elastischer Verformung als Wälzkörper, wobei die Gesamtlänge jeder Rolle 1,5-mal größer ist als der Durchmesser, wodurch die Steifigkeit erhöht wird.

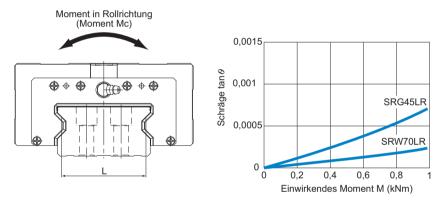
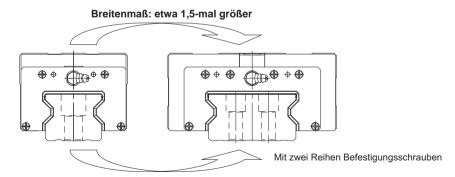
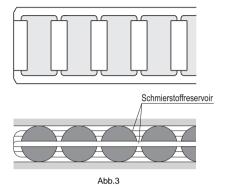


Abb.1 Ergebnis des Vergleichs der Momentsteifigkeit in rollender Richtung (Mc-Moment) bei Typ SRW und SRG



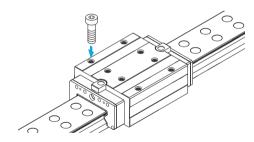

Abb.2 Querschnittvergleich zwischen Typ SRW und SRG

[Leichtgängigkeit durch Verhinderung von Rollenkippen]

Die neu entwickelte Rollenkette hält die Rollen in einem definierten Abstand zueinander und führt sie gleichmäßig und ohne das sonst typische Rollenkippen durch den Rollenumlauf. Damit entfällt die gegenseitige Reibung der Wälzelemente und der Verschleiß wird minimiert. Außerdem sorgt der niedrige Reibfaktor der Rollen für einen niedrigen Verschiebewiderstand. Der Anwender erhält ein Führungssystem mit höchster Laufkultur.

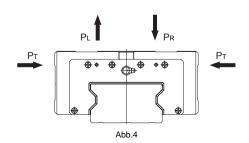
[Langfristig wartungsfreier Betrieb]

Die Abstandsräume zwischen den Rollen dienen als Schmierstoffreservoir. Diese gewährleisten bei jeder Bewegung eine kontinuierliche und äußerst effiziente Versorgung der Wälzelemente mit Schmierstoff. Für den Anwender ergeben sich dadurch wesentlich verlängerte Wartungsintervalle.



Typenübersicht

Typ SRW-LR


Der Führungswagen besitzt Gewindebohrungen.

Maßtabelle⇒B1-232

Tragzahlen in allen Richtungen

Der Typ SRW besitzen gleiche Tragzahlen in allen Hauptrichtungen (radial, gegenradial und tangential). Die Tragzahlen sind in den Maßtabellen angegebenen.

Produktbeschreibung

Breiter, hochsteifer Typ SRW

Aquivalente Belastung

Wenn der Führungswagen von Typ SRW Belastungen aus allen Richtungen gleichzeitig aufnimmt, so berechnet sich die äquivalente Belastung nach untenstehender Formel.

$$P_E = P_R (P_L) + P_T$$

P_E : Äquivalente Belastung (N)

: Radiale Richtung: Gegenradiale Richtung: Tangentiale Richtung

 $\begin{array}{lll} P_{\mathbb{R}} & : Radiale \ Belastung & (N) \\ P_{L} & : Gegenradiale \ Belastung & (N) \\ P_{T} & : Tangentiale \ Belastung & (N) \end{array}$

Lebensdauer

Siehe S. A1-76.

Vorspannung

Siehe S. A1-91.

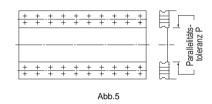
Genauigkeitsklassen

Siehe S. A1-103.

Schulterhöhe der Montagefläche und Ausrundungsradius

Siehe S. A1-311.

Zulässige Toleranz der Montagefläche


Die Linearführung Typ SRW mit Rollenkette zeichnet sich durch eine hohe Steifigkeit aus. Die Montagefläche muss daher sehr genau bearbeitet werden. Bei ungenauer Bearbeitung der Montagefläche wird der Verschiebewiderstand und die Lebensdauer negativ beeinflußt. Im Nachfolgenden ist der maximal zulässige Wert (Grenzwert) entsprechend der Vorspannung angegeben.

Tab.1 Parallelitätstoleranz (P) zwischen zwei Schienen Einheit: mm

Vorspannung Baugröße	Normal	C1	C0
SRW 70	0,013	0,009	0,007
SRW 85	0,016	0,011	0,008
SRW 100	0,020	0,014	0,011
SRW 130	0,026	0,018	0,014
SRW 150	0,030	0,021	0,016

Tab.2 Höhentoleranz (X) zwischen den Schienen

			Einheit: mm
Vorspannung	Normal	C1	C0
Genauigkeit der Montagefläche X	0,00020a	0,00014a	0,000072a

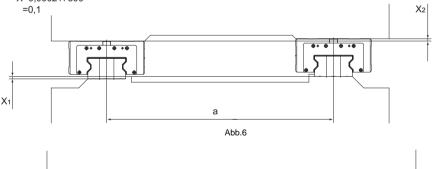
Tab.3 Höhentoleranz (Y) in axialer Richtung

Einheit: mm

Genauigkeit der Montagefläche	0,000036 b
----------------------------------	------------

 $X = X_1 + X_2$

X₁: Höhenunterschied auf der Schienenmontagefläche


X2: Höhenunterschied auf der Wagenmontagefläche

Berechnungsbeispiel

Wenn der Schienenabstand : a=500mm

a=500mm

Genauigkeit der Montageoberfläche X=0,0002 × 500

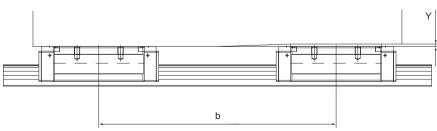


Abb.7

Produktbeschreibung

Breiter, hochsteifer Typ SRW